Correction du DM n°2

Exercice 1

1. On a
$$\left\{ \begin{array}{cccc} P_1 + P_2 & = & I_3 \\ 4P_1 + 9P_2 & = & A \end{array} \right. \iff \left\{ \begin{array}{cccc} P_1 + P_2 & = & I_3 \\ 5P_2 & = & A - 4I_3 \end{array} \right. \iff \left\{ \begin{array}{cccc} P_1 & = & I_3 - \frac{1}{5}(A - 4I_3) \\ P_2 & = & \frac{1}{5}(A - 4I_3) \end{array} \right.$$
 d'où

$$P_1 = \frac{9}{5}I_3 - \frac{1}{5}A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \quad \text{et} \quad P_2 = \frac{1}{5}(A - 4I_3) = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

2. (a) On calcule

$$P_1^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} = P_1 \qquad P_1 P_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad P_2 P_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad P_2^2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

(b) Pour tout $k \in \mathbb{N}$, on a

$$A^k = (4P_1 + 9P_2)^k$$
 d'après la question 1
$$= \sum_{i=0}^k (4P_1)^i (9P_2)^{k-i}$$
 car P_1 et P_2 commutent d'après la question 2.a
$$= \sum_{i=0}^k 4^i 9^{k-i} P_1^i P_2^{k-i}$$

or pour tout
$$i \ge 1$$
, $P_1^i = P_1$ et $P_2^i = P_2$ par récurrence immédiate car $P_1^2 = P_1$ et $P_2^2 = P_2$
$$= 4^0 9^{k-0} P_1^0 P_2^k + 4^k 9^{k-k} P_1^k P_2^{k-k} \qquad \text{car } P_1^i P_2^{k-i} = P_1 P_2 = 0 \text{ dès que } i \ge 1 \text{ et } k-i \ge 1$$

$$= 4^k P_1^k + 9^k P_2^k$$

Remarque : on pouvait aussi montrer le résultat par récurrence.

3. En posant $B=2P_1+3P_2$, on a $B^2=(2P_1+3P_2)^2=4P_1^2+6P_1P_2+6P_2P_1+9P_2^2=4P_1+9P_2=A$ d'après les résultats de la question 2.a.

Ainsi, la matrice
$$B = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ -1 & 1 & 2 \end{pmatrix}$$
 vérifie $B^2 = A$.

Problème

Partie 1

1. Le premier duel peut être gagné par A_0 ou A_1

Le deuxième duel peut être gagné par A_0 , A_1 ou A_2

Le troisième duel peut être gagné par A_0 , A_1 , A_2 ou A_3

Le tournoi ne peut pas avoir désigné de vainqueur au bout de 1 ou 2 duels (donc $\mathbb{P}(E_1) = \mathbb{P}(E_2) = 1$), et il désigne un vainqueur au 3ème duel si et seulement si A_0 ou A_1 gagne les trois premiers duels.

La probabilité que A_0 gagne les trois premiers duels est $q^3 = \frac{1}{8}$ et la probabilité que A_1 gagne les trois premiers duels est $pq^2 = \frac{1}{8}$. Ainsi, $\mathbb{P}(E_3) = 1 - \frac{1}{8} - \frac{1}{8} = \frac{3}{4}$.

1

Or,
$$\frac{1}{2}\mathbb{P}(E_2) + \frac{1}{4}\mathbb{P}(E_1) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$
 donc on a bien $\mathbb{P}(E_3) = \frac{1}{2}\mathbb{P}(E_2) + \frac{1}{4}\mathbb{P}(E_1)$.

2. Si l'événement E_n est réalisé, alors le vainqueur du n-ème duel n'a pu remporter que 1 ou 2 victoires.

Notons V_1 l'événement « Après le n-ème duel, le vainqueur du n-ème duel a remporté 1 victoire » et V_2 l'événement « Après le n-ème duel, le vainqueur du n-ème duel a remporté 2 victoires ». V_1 est réalisé si et seulement si A_n gagne le n-ème duel donc on a $\mathbb{P}(V_1) = p = \frac{1}{2}$, et V_2 est réalisé si et seulement si A_{n-1} gagne le (n-1)-ème et le n-ème duel donc $\mathbb{P}(V_2) = pq = \frac{1}{4}$.

- si V_1 est réalisé, E_n est réalisé si et seulement si E_{n-1} est réalisé donc $\mathbb{P}(E_n|V_1) = \mathbb{P}(E_{n-1})$
- si V_2 est réalisé, E_n est réalisé si et seulement si E_{n-2} est réalisé donc $\mathbb{P}(E_n|V_2) = \mathbb{P}(E_{n-2})$.

On a alors

$$E_n = (E_n \cap V_1) \cup (E_n \cap V_2)$$

et cette union est disjointe donc

$$\begin{split} \mathbb{P}(E_n) &= \mathbb{P}(E_n \cap V_1) + \mathbb{P}(E_n \cap V_2) \\ &= \mathbb{P}(V_1) \times \mathbb{P}(E_n | V_1) + \mathbb{P}(V_2) \times \mathbb{P}(E_n | V_2) \\ &= \frac{1}{2} \times \mathbb{P}(E_{n-1}) + \frac{1}{4} \times \mathbb{P}(E_{n-2}) \end{split}$$

3. La suite $(\mathbb{P}(E_n))_{n\in\mathbb{N}^*}$ est une suite récurrente linéaire d'ordre 2 d'après la question précédente. Son équation caractéristique est $r^2 = \frac{1}{2}r + \frac{1}{4} \iff r^2 - \frac{1}{2}r - \frac{1}{4} = 0$. $\Delta = \frac{5}{4} > 0$ donc elle a deux solutions réelles distinctes :

$$r_1 = \frac{\frac{1}{2} - \sqrt{\frac{5}{4}}}{2} = \frac{1 - \sqrt{5}}{4}$$
 et $r_2 = \frac{\frac{1}{2} + \sqrt{\frac{5}{4}}}{2} = \frac{1 + \sqrt{5}}{4}$

D'après le cours, il existe donc deux réels λ et μ tels que

$$\forall n \in \mathbb{N}^*, \mathbb{P}(E_n) = \lambda r_1^n + \mu r_2^n$$

Puisque 4 < 5 < 9 on a $2 < \sqrt{5} < 3$ d'où $-\frac{3}{4} < r_1 < -\frac{1}{2}$ et $\frac{3}{4} < r_2 < 1$. On a $|r_1| < 1$ et $|r_2| < 1$ donc $\lim_{n \to +\infty} r_1^n = \lim_{n \to +\infty} r_2^n = 0$ et donc par somme $\lim_{n \to +\infty} \mathbb{P}(E_n) = 0$.

4. La suite d'événement (E_n) est décroissante : en effet, si le tournoi n'a pas désigné de vainqueur après le (n+1)-ème duel, alors c'est qu'il n'avait pas non plus désigné de vainqueur après le n-ème duel donc $\forall n \in \mathbb{N}^*, E_{n+1} \subset E_n$.

D'après le théorème de la limite monotone, on a donc $\mathbb{P}\left(\bigcap_{n=2}^{+\infty} E_n\right) = \lim_{n \to +\infty} \mathbb{P}(E_n) = 0.$

L'événement « le tournoi désignera un vainqueur » est l'événement $\bigcup_{n=2}^{+\infty} \overline{E_n}$ qui est le contraire de l'événement $\bigcap_{n=2}^{+\infty} E_n$. Ainsi, $\mathbb{P}(\text{« le tournoi désignera un vainqueur »}) = 1.$

Partie 2

5. Notons que l'énoncé précise que le tournoi continue même si un vainqueur est désigné.

Soit $k \in \{1,...,N-1\}$. Si $A_k^{(n)}$ est réalisé , alors le vainqueur éventuel du tournoi ne peut pas être le vainqueur du n-ème duel, (qui est alors aussi le vainqueur des duels $E_{n-1}, E_{n-2}, ..., E_{n-k+1}$), car il a un nombre insuffisant de victoire. Ainsi, sous cette condition, le tournoi n'a pas encore désigné de vainqueur après le n-ème duel si et seulement si il n'en a pas désigné après le (n-k)-ème. On a donc bien

$$\mathbb{P}(E_n|A_k^{(n)}) = \mathbb{P}(E_{n-k})$$

6. Soit $n \ge N$. Raisonnons comme à la question 2 en distinguant selon le nombre de victoire du vainqueur du duel numéro n. Pour que l'événement E_n soit réalisé, il est nécessaire que ce nombre de victoire soit compris entre 1 et N-1.

Notons V_k l'événement « Le vainqueur du n-ème duel a remporté exactement k victoires ». V_k est réalisé si le joueur A_{n-k+1} a remporté les duels n, n-1,..., n-k+1 donc $\mathbb{P}(V_k)=pq^{k-1}$.

De plus, pour tout $k \in \{1, ..., N-1\}$, si V_k est réalisé alors le vainqueur du tournoi ne peut pas être le joueur A_{n-k+1} ni aucun des suivants, donc E_n est réalisé si et seulement si E_{n-k} est réalisé. On a donc $\mathbb{P}(E_n|V_k) = \mathbb{P}(E_{n-k})$.

Puisque $E_n = (E_n \cap V_1) \cup (E_n \cap V_2) \cup \cdots \cup (E_n \cap V_{N-1})$, on a par union disjointe d'événement :

$$\mathbb{P}(E_n) = \sum_{k=1}^{N-1} \mathbb{P}(E_n \cap V_k)$$
$$= \sum_{k=1}^{N-1} \mathbb{P}(V_k) \times \mathbb{P}(E_n | V_k)$$
$$= \sum_{k=1}^{N-1} pq^{k-1} \mathbb{P}(E_{n-k})$$

7. Le tournoi ne peut pas avoir désigné de vainqueur avant le N-ème duel puisqu'un joueur doit avoir gagné N duels pour remporter le tournoi. Ainsi,

$$\mathbb{P}(E_1) = \mathbb{P}(E_2) = \cdots = \mathbb{P}(E_{N-1}) = 1$$

D'après la question précédente, on a donc

$$\mathbb{P}(E_N) = \sum_{k=1}^{N-1} pq^{k-1} = p \sum_{k'=0}^{N-2} q^{k'} = p \frac{1 - q^{N-2+1}}{1 - q} = p \frac{1 - q^{N-1}}{p} = 1 - q^{N-1}$$

8. Puisque $E_{n+1} \subset E_n$, on a $\mathbb{P}(E_n \setminus E_{n+1}) = \mathbb{P}(E_n) - \mathbb{P}(E_{n+1})$.

L'événement $E_n \setminus E_{n+1}$ est réalisé si E_n est réalisé mais que E_{n+1} ne l'est pas, c'est à dire si le vainqueur du tournoi n'a pas encore été désigné au duel n mais qu'il l'a été après le duel n+1. C'est équivalent à dire que le vainqueur du tournoi a été désigné exactement au duel (n+1). Pour que cet événement soit réalisé, il faut et il suffit que personne n'ait remporté le tournoi avant le duel numéro (n+1-N) et que le joueur A_{n+2-N} gagne les duels n+2-N à n+1.

La probabilité que A_{n+2-N} gagne les duels (n+2-N) à (n+1) est pq^{N-1} (il a probabilité p de gagner son premier duel, puis probabilité q de gagner chacun des suivants).

La probabilité que personne n'ait remporté le tournoi avant le duel numéro (n+1-N) est $\mathbb{P}(E_{n-N+1})$ par définition.

On a donc bien:

$$\mathbb{P}(E_n \setminus E_{n+1}) = \mathbb{P}(E_n) - \mathbb{P}(E_{n+1}) = pq^{N-1}\mathbb{P}(E_{n-N+1})$$

9. La fonction $Q: x \mapsto Q(x) = \left(\sum_{k=1}^{N-1} pq^{k-1}x^k\right) - 1$ est dérivable sur $[0; +\infty[$ comme fonction polynôme de degré N-1, et

$$\forall x \in [0; +\infty[, Q'(x) = \sum_{k=1}^{N-1} pq^{k-1}kx^{k-1}]$$

Pour tout $x \in]0; +\infty[$, et tout $k \in [1, N-1]], x^{k-1} > 0$ donc Q'(x) > 0 car p > 0 et q = 1 - p > 0. On en déduit que Q est strictement croissante sur $]0; +\infty[$ donc sur $[0; +\infty[$ car continue.

Or Q(0)=-1 et $\lim_{x\to +\infty}Q(x)=+\infty$ car $Q(x)\underset{x\to +\infty}{\sim}pq^{N-2}x^{N-1}$, donc d'après le théorème des valeurs intermédiaires il existe un unique réel r_N tel que $Q(r_N)=0$.

Remarquons que $Q(1) = \left(\sum_{k=1}^{N-1} pq^{k-1}\right) - 1 = \left(p\sum_{k'=0}^{N-2} q^{k'}\right) - 1 = p\frac{1-q^{N-1}}{1-q} - 1 = 1 - q^{N-1} - 1 = -q^{N-1}$ donc Q(1) < 0. D'après le théorème des valeurs intermédiaires, l'unique racine de Q sur $[0; +\infty[$ doit donc se trouver sur l'intervalle $]1; +\infty[$ donc $r_N > 1$. On a $Q'(r_N) > 0$ car Q'(x) > 0 pour tout $x \in]0; +\infty[$

- 10. Pour tout entier $n \ge 1$, on note $\mathcal{P}(n)$: « $\mathbb{P}(E_n) \le \left(\frac{1}{r_N}\right)^{n-N}$ »et on raisonne par récurrence forte sur n.

 - **Hérédité**: Supposons que pour un certain $n \ge N$, $\mathcal{P}(k)$ soit vraie pour tout $k \in [1, n-1]$, c'est à dire que on a pour tout $k \in [1, n-1]$ on a $\mathbb{P}(E_k) \le \left(\frac{1}{r_N}\right)^{k-N}$. Alors d'après la question 6 :

$$\mathbb{P}(E_n) = \sum_{k=1}^{N-1} pq^{k-1} \mathbb{P}(E_{n-k})$$

$$\leq \sum_{k=1}^{N-1} pq^{k-1} \left(\frac{1}{r_N}\right)^{n-k-N}$$

$$\leq \left(\frac{1}{r_N}\right)^{n-N} \times \sum_{k=1}^{N-1} pq^{k-1} r_N^k$$

$$\leq \left(\frac{1}{r_N}\right)^{n-N} (Q(r_N) + 1)$$

$$\leq \left(\frac{1}{r_N}\right)^{n-N}$$

$$\operatorname{car} Q(r_N) = 0$$

donc $\mathcal{P}(n)$ est vraie.

- Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}^*$ on a $\mathbb{P}(E_n) \leq \left(\frac{1}{r_N}\right)^{n-N}$.
- 11. $1 < r_N$ donc $0 < \frac{1}{r_N} < 1$. La série de terme général $\left(\frac{1}{r_N}\right)^n$ est donc une série géométrique convergente, donc comme

$$\left(\frac{1}{r_N}\right)^{n-N} = \left(\frac{1}{r_N}\right)^n \times \underbrace{\left(\frac{1}{r_N}\right)^{-N}}_{\text{constante}}$$

la série $\sum_{n\geq 1} \left(\frac{1}{r_N}\right)^{n-N}$ converge.

Puisque $\forall n \geq 1$, $\mathbb{P}(E_n) \leq \left(\frac{1}{r_N}\right)^{n-N}$ et que la suite $(\mathbb{P}(E_n))_{n\geq 1}$ est positive, on en conclut d'après le théorème de comparaison pour les séries positives que la série $\sum_{n\geq 1} \mathbb{P}(E_n)$ converge.

En sommant la relation (\mathcal{R}_3) sur tous les entiers $n \geq N$, on obtient :

$$\sum_{n=N}^{+\infty} \mathbb{P}(E_n) - \sum_{n=N}^{+\infty} \mathbb{P}(E_{n+1}) = pq^{N-1} \sum_{n=N}^{+\infty} \mathbb{P}(E_{n-N+1})$$

donc par changements d'indices :

$$\sum_{n=N}^{+\infty} \mathbb{P}(E_n) - \sum_{n=N+1}^{+\infty} \mathbb{P}(E_n) = pq^{N-1} \sum_{n=1}^{+\infty} \mathbb{P}(E_n)$$

donc

$$\mathbb{P}(E_N) = pq^{N-1} \sum_{n=1}^{+\infty} \mathbb{P}(E_n)$$

d'où

$$\sum_{n=1}^{+\infty} \mathbb{P}(E_n) = \frac{\mathbb{P}(E_N)}{pq^{N-1}} = \frac{1 - q^{N-1}}{pq^{N-1}}$$